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Abstract: The study presents an algorithm to compute the heat transfer coefficient for thermal cable rating when modelling the
non-isothermal earth surface with the additional wall method. The position of the fictitious images is computed analytically by
recognising that the complex geometrical arrangement can be converted into a much simpler one using the Fourier transform. This
allows for the estimation of the heat transfer coefficient with simple formulas. The resulting equations are very easy to implement
and are entirely compatible with the standardised methods (IEC and IEEE) for rating power cables. Hundreds of finite elements
simulations have been performed to validate the proposed method which yielded results with typical differences of <5% for
standard installations.
1 Introduction

The life of the insulation of underground power cables is
dependent on the maximum temperature attained by the
cable core during operation. This temperature is a function
of the current carried by the cable. The heat transfer
coefficient at the soil–air interface is an important factor
in the calculation of underground cable ampacity. The
accurate computation of the heat transfer coefficient is
convoluted because of the temperature variation at the
earth’s surface. However, the IEEE and IEC standards
assume that the earth surface is an isotherm plane [1, 2].
Consequently, the thermal resistance external to the cable
(duct or backfill) for buried cables is computed using the
method of images. This method was proposed by
Thomson (Lord Kelvin) earlier than 1848 for electrostatic
problems [3]. It was expanded by him (in 1867) for both
thermal and electrostatic problems including multiple
sources and surface geometries [4]. For cable thermal
rating, the image method is known as the Kennelly
hypothesis [5] (1893). The technique was further
explained by Neher [6] in 1949 for installations with
multiple cables using the principle of superposition, and
experimentally verified by Bauer and Nease in 1957 [7].
The importance of the image method is that it provides a

convenient way to compute the temperature rise at any
point in the soil as the sum of the temperature rise caused
by the heat sources in the ground plus the temperature rise
caused by their fictitious images above the ground [8].
However, the Kennelly hypothesis precludes considering
the convective boundary conditions at the earth’s surface. It
has been demonstrated that for shallow installations the
results of assuming an isothermal surface overestimate the
ampacity of the cables [9–11]; see below Section 3.
The results of a comprehensive literature search revealed
that modelling of non-isothermal earth surface is not
widespread. Just over a handfull of publications discuss the
matter; see [8–15]. Goldenberg [9] presents a closed-form
solution to the heat transfer problem. Perhaps, because the
final formula looks complicated (includes the evaluation of
infinite series), no further studies seem to be made on this
formulation. In [10], a comprehensive summary of the
available analytical solutions is given; the fictitious layer
method is discussed in detail. In this ‘additional wall’
method as called by the originator, Kutateladze [15], the
earth surface is modelled by an imaginary layer of soil d
metres thick computed as

d = 1

rh
[m] (1)

where ρ (k m/W) is the thermal resistivity of the soil and h
(W/k m2) is the heat transfer coefficient. The heat transfer
coefficient is computed via an integral equation method
using the maximum temperature of the soil surface [10, 12,
15]. Therefore the external thermal resistance (T4)
computed using three different formulations follows the
inequality [12]: T4isothermal > T4Kutateladze fictitious layer >
T4non-isothermal.
In [11], finite elements have been used to compare the

results of isothermal and non-isothermal earth surface, but
no model compatible with the standard methods (IEEE or
IEC) was offered. In [13], a model based on a series of
layers with different thermal resistivities was proposed.
The literature search also yielded that among the available

commercial programs to compute cable ampacity only
CYMCAP seems to offer modelling of the non-isothermal
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earth surface [14]. It does it by using (1), but the application is
restricted to air temperatures higher than soil temperatures and
to comply with d/L < 0.4 (L is the burial depth of the cable
closest to the earth surface) [15]. The latter restriction
assures that the temperature distribution at the surface of the
fictitious layer is an isothermal [15]. The constraint d/L <
0.4 precludes the modelling of ‘very shallow installations’,
say L < 0.5 m.
The main contribution of this paper is the calculation of the

heat transfer coefficient h with simple (no integrals), yet
accurate formulas, applicable to the modelling of
non-isothermal earth surface (including very shallow
installations). By the use of the Fourier transformation, the
position of the fictitious image is obtained by verifying (1).
The final expressions are simple and are completely
compatible with the standard methods used for cable
thermal rating [1, 2]. The paper in addition to proposing a
formula to calculate the heat transfer coefficient, presents
the implementation of the Fourier transform to convert the
two-dimensional (2D) problem into a 1D problem.
The model presented in this paper (hereafter referred to as

the analytical solution) has been validated with hundreds of
finite element model (FEM) simulations. There is in the
literature substantial experimental verification of the IEC
standard calculations for underground cables [16–18] and
FEM simulations [19, 20]. Our FEM calculations match
very well with those experiments. In addition, to enhance
the confidence with the FEM simulations, the results of the
experiments presented in [21] have been reproduced by
simulation with a 0.5% difference. Other interesting
simulations are presented in [22].
The results presented in this paper extend for installation

depths from 0.05 to 2.5 m. The installation of high-voltage
cables at very shallow depths is prohibited for safety
reasons (depths < 0.5 m). However, the selected shallow
installation depth of 0.05 m is considered in the paper for
its theoretical value. The deeper installation limit of 2.5 m
is chosen, in addition to its academic value, because for
the short distances for avoiding the obstacles (e.g.
crossing roads, railroads, other cables and other
obstructions) this depth is possible. Moreover, the deeper
section along the run of the cable is frequently the bottle
neck and therefore it determines the ampacity of the
circuit. Without loss of generality the simple cable
construction given in the Appendix has been selected for
the study. The paper focus is on the effects of the
non-isothermal earth surface on the temperature rise of
cables. In terms of the IEC Standards, the paper only
Fig. 1 Directly buried cable transformed to the Fourier domain

a Geometry in spatial domain
b Geometry in Fourier domain
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deals with T4 (the external to the cable thermal
resistance), but all internal layers can be represented when
required following the IEC standards.

2 Theoretical considerations

2.1 Fourier transform

The application of Fourier transform to the complex
geometry of directly buried cables, significantly simplifies
the analysis of the problem. Specifically, the 2D heat
transfer problem of a directly buried cable is converted into
a 1D problem by the application of the Fourier transform.
The following equation describes the process

F{T (x, y)} = T (s, y) (2)

where x and y are the horizontal and vertical coordinates,
respectively, and s corresponds to horizontal components in
the transformed (Fourier) domain.

Fig. 1a shows a cable with Qs (W/m) losses directly buried
in the soil of thermal resistivity ρ. The cable is placed at a
burial depth L (m) from the surface exposed to an ambient
air temperature Tair. A cable can be considered as a point
source when compared with the vast expanse of the soil
region. Hence, the heat source could be expressed as a
Dirac-delta function δ(x) at depth L from the surface, where
the heat flux is Qs only at the position of the cable and zero
elsewhere. Fourier transform theory states that

F{d(x)} = 1 (3)

This indicates that a cable in the space domain can be
represented by a straight line with constant heat flux in the
Fourier domain as shown in Fig. 1.
Owing to the 2D nature of the original problem, the

temperature at the surface, Tsurface is a function of x, with
the maximum temperature directly above the cable (x = 0)
and gradually decreasing as one moves away (more on this
can be found below in Section 3). This significantly
convolutes the evaluation of the heat transfer coefficient h
(x) for the soil surface (in the spatial domain). The Fourier
domain of Fig. 1b presents a simplified geometry. The
cable becomes a constant line source and the temperature at
the soil surface T surface is constant. T surface can be computed
iteratively to satisfy the heat equation at the soil surface
T surface = T1 + Qs/h, convergence of which is obtained in
a few iterations. Thus, the calculation of the heat transfer
1355
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coefficient, h (in the transformed domain) is simplified and
can be obtained as follows [23–25]

h = Nu k/Lc (4)

where k is the thermal conductivity of air, Lc is the
characteristic length (the ratio of surface area to perimeter)
of the soil surface. For an infinite soil surface Lc = 0.5, and
Nu is the Nusselt number given by

Nu = C RamLc (5)

Equation (5) is valid for heat transfer because of laminar flow
of fluid, which in our case is air. The different values of C and
m are due to piece-wise approximation of the Nusselt number
in the laminar flow domain. The validity of this equation has
been experimentally verified in [23]. The values of C and m
are given in Table 1 ([23, 24]). The Rayleigh number RaLc
is computed from

RaLc = GrLcPr (6)

where GrLc is the Grashof number and Pr is the Prandtl
number given by

GrLc =
gb Ts − T1

( )
L3c

n2
(7)

and

Pr = Cpm

k
≃ 0.7 (for air) (8)

where g is the acceleration due to gravity ( = 9.8 m/s2); β is the
volumetric thermal expansion coefficient [1/K ] = 1/Ts;

m = dynamic viscosity[Pa · s] = 1.827× 10−5 410.85

T s + 120

( )

T s

291.15

( )1.5

; Cp is the specific heat capacity at constant

pressure = 1006 J/kg K; ν is the kinematic viscosity [m2/s] =

μ/α; α is the air density [kg/m3] = 352.98/Ts; k = 1.5207×
10−11�T

3
s − 4.857× 10−8�T

2
s + 1.0184× 10−4�T s − 3.9333×

10−4; �T s = �T surface + T1
( )

/2 = average surface-ambient
temperature (K); T¥ = ambient air temperature (K).
It is of paramount importance to note that the value of h

using (4) to (8) is independent of cable depth and cable
dimensions. The heat transfer coefficient in the transformed
domain depends only on the physical properties (of air) and
the amount of heat dissipated.

2.2 Solution of the transformed domain problem

After the application of the Fourier transform, the 2D heat
transfer problem reduces to the solution of the 1D diffusion
Table 1 Calculation of Nusselt number from the Rayleigh
number [23]

Range RaL C m

1–200 0.96 1/6
200–8 × 106 0.54 1/4
8 × 106–3 × 1010 0.14 1/3
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equation [24] as follows

d2

dy2
T (s, y) = 0 (9)

subjected to the following boundary conditions

−k
dT (s, y)

dy

∣∣∣∣
y=L

= h× T (s, y = L) (10)

−k
dT (s, y)

dy

∣∣∣∣
y=0

= Qs (11)

The solution of (9) with (10) and (11) yields

T (s, y) = −Qsry+
Qs

h
1+ hrL
( )

(12)

The thermal problem of Fig. 1a can also be analysed with the
method of images; see Fig. 2a. The Fourier transform applied
to this geometry produces that the cable (heat source) and the
image (heat sink) become a line source and a sink,
respectively; see Fig. 2b. The non-isothermal earth surface
can be modelled with the help of a fictitious earth layer
with thickness d [15]. The cable image line source (sink) is
placed at distance L′ = L + d above the fictitious layer.
The governing equation is the same as (9). The boundary

condition (11) is applicable because of the same line
source. In addition, at y = 2L′ we have

−k
∂d(s, y)

dy

∣∣∣∣
y=2L′

= −Qs (13)

Owing to a uniform temperature gradient, one can see that

T (s, y)
∣∣
y=L′= 0 (14)

Substituting (14) and (11) in (9), we obtain

T (s, y) = −Qsry+ QsrL
′ (15)

Comparing (12) and (15) we see that

d = 1

hr
(16)

As stated earlier, this equation has been proved long back
[10, 12] in the spatial domain. However, the real challenge
in the applicability of (1) is the evaluation of h since the
surface temperature is not constant. The difficulty is
overcome in this paper by solving the problem in the
Fourier domain where the evaluation of h is relatively
simple with (4)–(8). We make the important remark that
since h is only used here to compute the thickness of the
fictitious layer, there is no need to take the inverse Fourier
transform. This means that the dependency of the fictitious
layer on cable dimensions and installation depth is
completely eliminated. The validity range of (4) and (16)
will be established numerically in the next section using
finite element simulations.
The algorithm to calculate the heat transfer coefficient is an

iterative process and is detailed in Fig. 3.
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Fig. 2 Method of images transformed to the Fourier domain;

a Cable and its image in spatial domain;
b Cable and its image in Fourier domain

Fig. 3 Algorithm for calculating the heat transfer coefficient

Fig. 4 Point source correction for cables directly buried in soil

a Solution of image problem;
b Eccentricity correction

www.ietdl.org
2.3 Point source correction

The solution of the image problem described in Fig. 3 is [3]

Tp(x, y) = Tamb +
rQs

2p
ln

r′

r

( )
(17)

where Tp(x, y) is the temperature at point P with coordinates x
and y and Tamb is the ambient soil temperature.
The solution assumes that the heat sources are filamentary.

However, in reality the entire cable core acts as the heat
source. This along with the proximity to the non-isothermal
earth surface can drastically deform the isotherms around
the cable; see Section 3. Also since the cable core is made
of high thermal conductivity material, the entire circular
region with radius rc is isothermal. To equate this physical
reality to the point source problem, the point source must
be relocated from point 1 (geometric centre of the cable) to
point 2 (corrected location) as shown in Fig. 4.
The heat source location is corrected by distance x such that

the cable core surface is an isotherm. By using (17) to
IET Gener. Transm. Distrib., 2014, Vol. 8, Iss. 7, pp. 1354–1361
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evaluate and equate the top and bottom temperatures of the
cable core, Ttop and Tbot, we obtain

x = L−
��������
L2 − r2c

√
(18)

It has been observed that the point source correction yields
about 1% improvement on the results when the correction is
not used and is more significant for shallow installations.

3 FEM simulations and validation

To establish the validity range of the formulas given in the
IEC standard and the model given in the above section,
hundreds of FEM simulations were performed. The
maximum temperature attained by a single (or set of cables)
directly buried in soil is used as the measurement
parameter. In conjunction with simulations, the accuracy of
the image method in determining these values was tested.

3.1 Convective cooling against fixed temperature
boundary

According to the IEC and IEEE standards, cable ampacity is
computed assuming that the earth surface is an isotherm plane
[1, 2]. This leads, potentially, to large errors in the calculated
conductor temperature against actual temperature because
heat transfer to and from the external air is not taken into
account. To find the errors of assuming an isothermal earth
surface, hundreds of finite elements (FEM) simulations are
performed. All finite element simulations of this paper were
performed using the heat transfer module of COMSOL
Multiphysics [26], which allows for the representation of
problems involving conduction, convection and radiation.
Simulations using several methods are compared: (i) an
isotherm surface with FEM; (ii) image method with FEM;
(iii) IEC formulas; and (iv) a convective cooling boundary
along the soil boundary. All the cases were run with
constant cable loss in the steady state to obtain the graph in
Fig. 5. The FEM model has 9664 elements of second order.
The solver used is a stationary fully coupled solver. The
geometry used is 20 m wide by 7 m deep. The lower
boundary is an infinite element boundary to simulate the
infinite soil domain. The vertical boundaries are set as
Neumann boundaries. The soil surface (top boundary) is set
as a convective boundary. The convective cooling boundary
condition effectively simulates the effects because of
1357
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Fig. 5 Maximum temperature attained against depth of cable for
50 W/m dissipation with equal soil and ambient temperature of
10˚C and soil resistivity of 1.2 m K/W

Fig. 6 Isotherms for a typical 3 × 3 cable installation of buried
cables

a Assuming a fixed temperature boundary at the surface
b Assuming a convective cooling boundary at the surface
c Convective cooling and image method

www.ietdl.org
convection to ambient air above the surface without the need
to simulate the complicated natural convection associated
with the phenomenon.
Only three curves are shown in Fig. 5 because the results of

the image method with the FEM and the IEC methods are
identical. Also, one can observe that the temperatures
computed with the IEC method and the FEM simulations
with fixed boundary temperature at the surface are very
close to each other. However, there is a significant
difference in conductor temperature when the results are
compared with the more realistic convective cooling
boundary condition. The temperature difference found, for
shallow cable installations (0.5 m), between the standard
fixed temperature boundary and the more accurate
convective cooling boundary condition at the soil–air layer
is around 6.5%. The error is larger for very shallow
installations. As expected, the differences become smaller
as the depth of the installation increases. At the typical
installation depths (1 m) the difference is about 4%.
Figs. 6a and b present a typical 3 × 3 cable installation of

buried cables used to show the differences between
convective cooling and fixed boundary. It can be noted by
observing Fig. 6a that when a fixed temperature boundary
is used the isotherm lines associated with the temperature
distribution in the soil do not intersect the soil–air
boundary, illustrating an unrealistic model of the physical
phenomenon. However, when a convective cooling
boundary is applied, as seen in Fig. 6b, the isothermal lines
intersect the soil–air boundary and show a large variation of
the temperature along the soil surface, representing more
realistically the temperature distribution seen at the soil
surface.
3.2 Verification of isotherms for the image method

As described in Section 2, the image method can be
modified to account for a convective cooling boundary
(non-isothermal) condition at the soil–air boundary. To
verify that the proposed (4) and (16) are accurate for
realistic cases, the maximum temperature achieved in the
conductor as well as the isothermal lines showing the
temperature distribution within the soil must match those
found with the convective cooling case. This will ensure
that the variables h and d calculated numerically with
FEM simulations match with those found analytically in
Section 2.
1358
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As seen in Fig. 6c, the isotherms associated with a
convective cooling boundary at the soil, shown outlining
the colour gradient, mimic those obtained when using the
image method. These results give great confidence in the
accuracy of the image method to replicate the results found
with the convective cooling boundary condition when the
air temperature equals the ambient temperature of the soil.
Note that the soil and fictitious layer lines in Fig. 6c are
straight and parallel, but there is an optical illusion caused
by the curvature of the isotherms.
3.3 Comparison with FEM

The validity of the proposed theory for realistic cable
installations is very important. The results of the formulation
of this paper are compared with hundreds of FEM
simulations. A range of parametric tests are performed on
single, trefoil, flat and 3 × 3 cable formations varying soil
IET Gener. Transm. Distrib., 2014, Vol. 8, Iss. 7, pp. 1354–1361
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resistivity and depth of cable installation. It must be noted that
the method is independent of cable construction and is
completely general. The cable used in this study is similar to
the one used in [27]. The details of the cable are given in
the Appendix. Results for each installation are presented for
8 values of ρ at 16 values of cable depth. These 128 cases
are compared against the proposed model for each
installation which sums up to a total of 512 simulations. All
simulations are run for an ambient temperature of 20°C.
Fig. 7a–d plot the percent difference whereas Tables 2–4
present the best and worst match of the maximum cable core
temperature (any of the parallel cables) with FEM simulations.
Results are obtained for a single cable installation with the

cable depth (L) varied from 0.05 to 2.5 m (for theoretical
completeness) for soil resistivity (ρ) variation from a
minimum of 0.3 m K/W to a maximum of 4 m K/W. The
best and worst results are presented in Table 2. Fig. 7a
presents the percent difference for a total of 128 cases. The
method gives an almost perfect match for standard cable
depths and higher soil resistivities at shallow depths.
A parametric variation of ρ and L is performed for trefoil

installations. Table 3 shows a maximum of 2.6% difference
for standard depths. Fig. 7b depicts how the error amplifies
for shallow depths, details of which are discussed in the
later part of this section.
A flat cable formation with a separation of one cable

diameter is used for parametric sweep of ρ and L. Table 4
shows a maximum of 1.79% difference for standard cable
depths. Fig. 7c shows an acceptable difference range (−2 to
2%) for standard depths. The cumulative results are similar
to those of the trefoils but with enlarged differences for
shallow installations.
Fig. 7 Percent difference against cable depth for various soil resistiviti

a Single cable installation
b Trefoil cable installation
c Cables in flat formation
d 3 × 3 Cable installation
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A 3 × 3 cable formation with a separation of one cable
diameter is used for parametric sweep of ρ and L. Table 5
shows a maximum of 5.5% difference for standard cable
depths. Fig. 7d shows the error to vary between −3 and
6.5% for standard depths. Contrary to previous installation
types, the differences reduce for shallow 3 × 3 installations.
Even though the theory was developed for a single heat

source, the method was successfully implemented for
multiple heat sources (trefoil, flat formations and 3 × 3
arrangements). It has been demonstrated that the model
works effectively for these practical installations and
provides confidence in the proposed method.
The problem of considering multiple heat sources is solved

using superposition. This is applicable strictly to a linear
problem. However, the problem at hand is made non-linear
because of the nature of h. In addition, since the flat and
3 × 3 installations consist of heat sources separated by a
distance, the deviation from a point source geometry is
larger and hence can be a contributing factor to the slightly
larger differences.
Even though very shallow installations are not practical for

safety reasons, the results were presented for theoretical
completeness. Fourier analysis assumes that the heat
sources (cables) are filamentary. However, for very shallow
installations, this is not the case since the dimensions of the
cables are comparable with the depth. Hence, the model
yields larger differences for shallow depths.
Fig. 8 plots the temperature variation along the soil

surface for various cable installation depths obtained with
FEM simulations. It is observed that for very shallow
installations, that is, cables installed <0.5 m from the
surface, the temperature varies significantly. In addition,
es
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Table 2 Comparison between FEM and analytical method for single cable installation (ambient temperature Ts = 20°C)

ρ, m K/W L, m Q, W/m Temperature,°C FEM Temperature, °C Analytical % difference

Tabsolute ΔT

0.3 0.05 123.49 85.89 79.93 6.94 9.05
0.3 2.5 123.49 90.00 88.84 1.28 1.66
1 0.05 61.5 69.22 66.72 3.62 5.08
1 2.5 61.5 90.00 89.29 0.79 1.01
4 0.05 19.6 51.22 51.03 0.37 0.61
4 2.5 19.6 89.97 89.74 0.26 0.33

Table 3 Comparison between FEM and analytical method for trefoil cable installation (ambient temperature Ts = 20°C)

ρ, m K/W L, m Q, W/m Temperature, °C FEM Temperature, °C Analytical % difference

Tabsolute ΔT

0.3 0.05 65.03 81.27 79.76 1.86 2.46
0.3 2.5 65.03 89.99 92.36 −2.64 −3.39
1 0.05 26.62 63.16 65.62 −3.89 −5.70
1 2.5 26.62 90.00 91.25 −1.39 −1.79
4 0.05 7.69 48.45 53.02 −9.45 −16.06
4 2.5 7.69 89.92 91.84 −2.13 −2.75

Table 4 Comparison between FEM and analytical method for flat cable installation (ambient temperature Ts = 20°C)

ρ, m K/W L, m Q, W/m Temperature, °C FEM Temperature, °C Analytical % difference

Tabsolute ΔT

0.3 0.05 66.51 82.03 75.53 7.93 10.48
0.3 2.5 66.51 90.00 88.84 1.28 1.66
1 0.05 26.7 61.90 62.13 −0.37 −0.55
1 2.5 26.7 89.98 89.25 0.81 1.04
4 0.05 7.75 43.99 48.69 −10.69 −19.59
4 2.5 7.75 89.95 91.57 −1.79 −2.32

Table 5 Comparison between FEM and analytical method for 3 × 3 cable installation (ambient temperature Ts = 20°C)

ρ, m K/W L, m Q, W/m Temperature, °C FEM Temperature, °C Analytical % difference

Tabsolute ΔT

0.3 0.05 33.11 72.68 75.47 −3.83 −5.30
0.3 2.5 33.11 89.98 92.26 −2.54 −3.26
1 0.05 10.84 61.22 58.52 4.41 6.55
1 2.5 10.84 89.99 85.04 5.50 7.07
4 0.05 3 50.42 48.91 3.01 4.96
4 2.5 3 89.87 86.60 3.64 4.68

Fig. 8 Soil surface-temperature variation for various cable
depths; ρsoil = 2.0 m K/W, Tamb = 20°C, Qloss = 36 W/m

www.ietdl.org
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because of the higher temperature difference between the
soil surface and ambient air in shallow installations, heat
transfer by radiation is also significant. These are the
reasons for increased differences in Tables 2–4 for very
shallow installations. Note, however, that very shallow
installation of high-voltage cables (under 0.5 m) may be
dangerous and it is prohibited in most places.
Furthermore, even for shallow installations the methods
proposed in this paper give acceptable results for the
thermal rating of cables.

4 Conclusions

An integral transformation (Fourier transform) was applied to
convert the complicated 2D heat transfer problem of directly
IET Gener. Transm. Distrib., 2014, Vol. 8, Iss. 7, pp. 1354–1361
doi: 10.1049/iet-gtd.2013.0721
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buried cables to a simple 1D problem. The position of the
images has been obtained analytically by recognising that
there is no need to compute the inverse transformation
when one is only looking for the location of the images. A
simple, yet accurate, procedure has been proposed for the
calculation of the heat transfer coefficient for the modelling
of the non-isothermal earth surface. This is possible because
in the Fourier domain the heat transfer coefficient becomes
only a function of the physical properties of air and heat
dissipated by the cable. It is independent of soil resistivity,
cable dimensions and installation depth.
The method has been implemented successfully for

common installations and is fully compatible with the
standardised methods (IEC and IEEE) for rating power
cables. With hundreds of finite elements simulations, the
validity range of the method has been established.
Utilising FEM software to model underground cables is

time-consuming and computationally intensive. The paper
proposes a computationally efficient and easy to implement
algorithm than can help to accurately calculate cable
ampacity considering non-isothermal soil. The algorithm is
compatible with the IEC Standard calculation methods and
therefore any cable construction can be modelled.
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6 Appendix – Cable data

Owing to its simple construction, the characteristics of a 500
MCM welding cable was used in this paper (similar to one
used in [27]); details as follows:

† Diameter of stranded copper conductor: 17.93 mm;
† Unfilled XLPE insulation thickness: 11 mm.
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